Тема Вихретоковый метод НК

Тема: Вихретоковый вид неразрушающего контроля

Вихретоковый метод неразрушающего контроля основан на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых в объект контроля этим полем. Данный метод применяют для контроля деталей, изготовленных из электропроводящих материалов. Вихревые токи возбуждаются в объекте преобразователем в виде индуктивной катушки, питаемой переменным или импульсным током. Приемным преобразователем (измерителем) служит та же или другая катушка. Возбуждающую и приемную катушки располагают либо с одной стороны, либо по разные стороны от ОК.

Интенсивность и распределение вихревых токов в объекте зависят от его размеров, электрических и магнитных свойств материала, от наличия в материале нарушений сплошности, взаимного расположения преобразователя и ОК, т. е. от многих параметров.

Это определяет большие возможности метода как средства контроля различных свойств объекта, но в то же время затрудняет его применение, так как при контроле одного параметра другие являются мешающими.

Для разделения параметров используют раздельное или совместное измерение фазы, частоты и амплитуды напряжения измерительного преобразователя, подмагничивание ферромагнитных ОК постоянным магнитным полем, ведут контроль одновременно на нескольких частотах, применяют спектральный анализ. Получаемые таким образом первичные информативные параметры позволяют контролировать размеры изделий (толщину стенки при одностороннем доступе), определять химсостав и структуру материала ОК, внутренние напряжения, обнаруживать поверхностные и подповерхностные (на глубине нескольких миллиметров) дефекты.

Особенности присущие вихретоковым методам:

многопараметровость,

бесконтактный контроль,

нечувствительность к изменению влажности» давления и загрязненности газовой среды,

поверхности объектов контроля непроводящими веществами. Вихретоковые методы имеют два основных ограничения

во-первых, их применяют только для контроля электропроводящих изделий;

во-вторых, они имеют малую глубину контроля, связанную с особенностями проникновения электромагнитных волн в объект контроля.

Контрольно измерительные задачи, решаемые с помощью вихретоковых методов:

позволяют обнаружить трещины, раковины, неметаллические включения и другие виды нарушений сплошности (дефектоскопия);

измерять толщины прутков, стенок труб (при одностороннем доступе), диаметр проволок, а так же толщины лакокрасочных, эмалевых, керамических, гальванических и других покрытий, нанесенных на электропроводящую основу (толщинометрия);

контролировать химический состав, механические свойства, остаточные напряжения (структуроскопия).

К числу главных достоинств вихретокового метода следует отнести его универсальность и широкие функциональные возможности, которые до настоящего времени еще не до конца использованы. В то же время применение этого метода затрудняется тем, что при контроле одного параметра другие являются мешающими.



Неразрушающий контроль осуществляют с помощью СНК (средств неразрушающего контроля): приборов (дефектоскопов, толщиномеров, структуроскопов и т.д.) и установок, а также дефектоскопических веществ и материалов (проникающих и проявляющих жид костей, магнитных порошков и суспензий, паст и т.д.), стандартных образцов, вспомогательного оборудования. 

Дефектоскопы представляют собой приборы и установки, предназначенные для обнаружения дефектов типа сплошности. Практически все дефектоскопы не только выявляют дефекты в изделии, но и определяют с установленной погрешностью его размеры и местонахождение. Некоторые дефектоскопы способны обнаруживать дефекты, определять глубину их и координаты относительно плоскостей изделия. 

Структуроскопы в зависимости от их принципа действия могут определять физико-химические свойства материала, оценивать твердость и прочность материалов, глубину и качество термической обработки, обнаруживать отклонение содержания углерода от номинального значения, рассортировывать изделия по твердости, выявлять неоднородные по структуре области. 



Толщиномеры, принцип работы которых основан на одном из методов неразрушающего контроля, позволяют быстро и без повреждения объекта контроля получить информацию о толщине изделия при одностороннем к нему доступе и о толщине лакокрасочных, гальванических, специальных покрытии, нанесенных на металлическую основу.

Основополагающими критериями при выборе толщиномера являются:

соответствие диапазона измерений контролируемым толщинам;

допустимый радиус кривизны контролируемой поверхности;

шероховатость контролируемой поверхности и донной поверхности (при необходимости);

клиновидность контактной и донной поверхностей,

основная погрешность прибора, которая не должна превышать:

для толщиномеров, контролирующих толщину гальванопокрытий, 30 % от допуска на контролируемый параметр;

для толщиномеров, контролирующих линейные размеры деталей, погрешность измерения регламентируется ГОСТ 8.051;

Следует помнить, что основная погрешность прибора определена для нормальных условий его применения, оговоренных в нормативной документации на прибор.



По взаиморасположению преобразователя и объекта различают проходные, погружные, накладные и экранные преобразователи (рис. 3). Последние предназначены для работы по методу прохождения.

Рисунок 3 – Некоторые типы вихретоковых преобразователей: а, б – проходные наружный и внутренний, в – накладной, г – экранный (1 – контролируемый, объект, 2 – преобразователи)

Контроль вихревыми токами можно выполнять без непосредственного механического контакта преобразователей с объектом, что позволяет вести контроль при взаимном перемещении преобразователя и объекта с большой скоростью.

Развитие вихретокового вида контроля идет в направлениях изыскания путей контроля изделий сложной конфигурации и многослойных объектов, усовершенствования способов отстройки от мешающих параметров, разработки многодатчиковых и многочастотных систем для комплексного контроля свойств объекта.