сист.анализ

1 билет.Общее понятие систем и системного анализа.

Система — совокупность элементов, находящихся в отношениях и связях друг с другом, (физ. лицо, крупный субъект и тд.

9 признаков системной проблемы:

слабая структурируемость (пробки на дороге)

неопределенность — результат функционирования системы выпускает вариацию

неоднозначность — система имеет несколько вариантов решения, которые сложно ранжировать

признак риска — системная проблема всегда имеет риск

многоаспектность

комплексность

саморазрешимость

этапность

эволюционность — любая проблема развивается последовательно

Когда есть все или большинство признаков, надо провести 2 типа анализа:

декомпозиция

синтез

Решают по следующим принципам:

цикличность — принимаем одинаковые решения. Образуют подход к проблемам

интегративность — последовательное приближения

этапность (последовательность) — анализируем проблему заранее определенной последовательностью действий

Закономерности. При их наличии ищем решения проблемы:

Принцип Парето: 20% факторов определяют 80% результата

З перехода с макро на микро уровень (проблемы на рынке приходят на фирму)

З слабого места- Разваливается и восстанавливается со слабых мест

З возрастания и убывания беспорядка

З стремления к равновесию

З циклического функционирования

З отсутствия идеального состояния

З внутрисистемного и межсистемного взаимодействия

З системности — любую систему можно рассматривать в совокупности

З потенциально лёгкой системы от характера взаимодействия элементов данной системы

З последовательного приближения к желаемому результату

З расхождения в темпах выполнения функций отдельными элементами системы

2 билет. Этапы системного анализа в управлении качеством.

Содержательная постановка задачи  -должны быть установлены и зафиксированы понятия эффективности деятельности системы

Построение модели изучаемой системы

Отыскание решения задачи с помощью модели

Проверка решения с помощью модели

Подстройка решения под внешние условия

Осуществление решения

3билет.Понятие системы, понятия характеризующие строение и развитие систем. Классификация систем.

система -  множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

Понятия, характеризующие функционирование и развитие систем

Элемент — простейшая неделимая часть системы

Подсистемы- более крупные, чем элементы, и в то же время более детальные, чем система в целом

Структура- строение, расположение, порядок

Связь- обеспечивает возникновение и сохранение структуры и целостных свойств системы

Состояние- это множество существенных свойств, которыми система обладает в данный момент времени

Поведение- Если система способна переходить из одного состояния в другое то говорят, что она обладает поведением

Внешняя среда- множество элементов, которые не входят в систему, но изменение их состояния вызывает изменение поведения системы

Модель- описание системы, отображающее определенную группу ее свойств

Модель функционирования (поведения) системы- модель, предсказывающая изменение состояния системы во времени

Классификация систем:

Абстрактные системы — все их элементы — понятия 

Конкретные системы - их элементы -физ. объекты. системы. Они разделяются на естественные (без человека) и искусственные.

Открытые системы - системы, обменивающиеся с внешней средой ресурсами и информацией.

Закрытые системы - системы, у которых нет обмена с внешней средой.

Динамическая система - структурированный объект, есть входы и выходы, в него в определенные моменты времени можно вводить/выводить ресурсы, информацию. В одних динамических системах процессы непрерывны, а в других - совершаются только в определенные моменты времени.

Адаптивные системы - системы, функционирующие в условиях начальной неопределенности и изменяющихся внешних условиях. В теории управления адаптацией называют процесс накопления и использования информации в системе, направленной на достижение оптимального состояния при изменяющихся внешних условиях.

Иерархические системы - системы, элементы которых сгруппированы по уровням, вертикально соотнесенным один с другим; при этом элементы уровней имеют разветвляющиеся выходы. Для всех иерархических систем характерны:

-последовательное вертикальное расположение уровней, составляющих систему (подсистему);

-приоритет действий подсистем верхнего уровня (право вмешательства);

-зависимость действий подсистемы верхнего уровня от фактического исполнения нижними уровнями своих функций;

-относительная самостоятельность подсистем, что обеспечивает возможность сочетания централизованного и децентрализованного управления сложной системой.

Кроме того, системы можно разделять на простые и сложные, детерминированные и вероятностные, линейные и нелинейные и т.д.

4 билет.Характеристика естественных, концептуальных, искусственных простых и сложных, целенаправленных и целеполагающих, активных и пассивных систем

Естественные:

образованы природными объектами (космические, планетарные, молекулярные)

Их возникновение не связано(или почти) с деятельностью человека. Например солнечная система. Таких систем все меньше. т.к. человек во все вмешивается => экологические проблемы (это глобальные проблемы).

Концептуальные:

Выраженные в символьной форме представления людей, отражающие прошлую, настоящую и будущую реальность.(научные теории, компьютерные программы, художественная или рекламная продукция и др.) Смысл в том, что смысловая информация не только в символах, но и между ними(полная инфа = инфа в символах +инфа м/д символами. М/д символами- например то что хотел сказать своей статьей редактор)(есть формальные-Min межсимв инфы, абстрактные-min смысл инфы, ф+а= смешаные, латентные -инфа не понятна на данный перид (ин.яз. для незнающего)

Искусственные

результат практической деятельности человека. например банк, фирмы, учебные учреждения и др.

простые:

части сложной системы, реакция на внешние воздействия предсказуема. Хорошо устойчивы лишь в области где происходит их развитие.

Сложные:

в одном случае они могут на 2 одинаковых воздействия отреагировать по разному, а на 2 разных воздействия отреагировать одинаково. У них свои законы сохранения, которые мало зависят от внешней среды.

Целенаправленные:

адаптируется к внешней среде и следует своему плану. параметры которого определяются извне. Характерно то, что строгое следование плану приводит к неустойчивости. например ресурсы закончились-2 выбора- изменить план или взять ресурсы из внешней среды. К среде относится этой агрессивно => конфликты

Целеполагающие:

Сами формируют цели и их последовательность, следующая зависит от последующей. Очень зависит от внешней среды. Их развитие сопровождается конфликтами и кризисами из за несоответствия новых целей со старыми.

Активные

Пассивные

5билет.Типовая структура системной модели

пока не создано единой теории и технологии построения системных моделей. но можно описать структуру типовой системной модели. Она состоит их двух компонентов:

Информационный компонент:

упорядоченные сведения о внешнем и внутреннем мире системной модели. Момент который определяет компонент — идентичность (создание условий благодаря которым понимаются информационные объекты, которые используются для описания проблемных ситуаций) описаний объекта изучения у партнеров, ведущих диалог.

компонент делят на 4 базы знаний:

-декларативных(правила вывода из него делают обобщения и заключения.2 уровня: пользовательский: сценарии для анализа ситуаций в объекте изучения. прагматический: прикладные программные модули)

-предметных(упорядоченные факты и знания, отражающие проблему и внешний и внутренний мир модели.2 уровня: пользовательский: например список терминов, прагматический: база данных в ее традиционном понимании)

-процедурных(правила определяющие способы применения предметных и декларативных знаний. есть план-график в котором указывается- кто. что. в каком виде и когда должен сделать)

-лингвистических(правила синтаксического ,морфологического анализа текстов и списки тех слов которые используются между моделью и исследователем)

Операционно- лингвистический компонент:

структурируемая совокупность программ, выполняющая анализ и синтез текстов естественного языка, запоминания, забывания, планирования и оптимизации вычислительного процесса.

Операционный компонент состоит из блоков:

1)лингвистический процессор -перевод входных текстов естественного языка на язык представления знаний в модели о обратно

Этапы:

-списки слов(без суф, окончаний) которые есть в лингвистической базе данных.здесь каждой фразе присваивается свой символ. который однозначно воспринимается лингвистическим процессором.

-синтаксически анализ для получения формализованной записи синтаксической структуры входного выражения

-идентификация фразы.

суть -процедуры перевода фраз должны быть обратимыми в обе стороны.

2)информационный процессор-программа, осуществляющая запоминание, забывание и извлечение инфы о внеш и внутр мирах модели. Он реализует функции управления базой данных.

3)логический процессор-программа, осуществляющая классификацию и обобщение текущих ситуаций в объекте исследования, логический поиск решений и их координацию при невозможности идентификации, она или расчленяется или обобщается.

4)вычислительный процессор -программа, выполняющая вычисления. после завершения программы полученная инфа передается в лингвистический процессор, а оттуда — исследователю.

-

-

-

-

-

-

-

-

6билет. Мягкие вычисления и логико-лингвистическое вычисление.

графические и математические модели

13 билет

Графические модели

имитационная модель IDEF0

Графы

Наглядным средством отображения состава и структуры систем являются графы.

Составными частями графа являются вершины и ребра. На рисунке вершины отображены кружками – это элементы системы, а ребра изображены линиями – это связи (отношения) между элементами. Пример графа

Этапы системного анализа в управлении качеством

Качественно иной пример графа изображен на следующем рисунке.

Этот пример относится к медицине. Известно, что у разных людей кровь отличается по группе. Существуют четыре группы крови. Оказывается, что при переливании  крови от одного человека к другому не все группы совместимы. Граф показывает возможные варианты переливания крови. Группы крови – это вершины  графа с соответствующими номерами, а стрелки указывают на возможность переливания одной группы крови человеку с другой группой крови. Например, из этого графа видно, что кровь первой группы можно переливать любому человеку, а человек  с первой группой крови воспринимает только кровь своей группы. Видно также, что человеку с IV группой крови можно переливать любую, но его собственную кровь можно переливать только в ту же группу.

Этапы системного анализа в управлении качеством

Связи между вершинами  данного графа несимметричны и поэтому изображаются направленными линиями со стрелками. Такие линии принято называть дугами (в отличие от ребер неориентированных графов). Граф с такими свойствами называется ориентированным. Линия, выходящая и входящая в одну и ту же вершину, называется петлей. В данном примере присутствуют четыре петли.

Дерево – граф иерархической структуры

Весьма распространенным типом систем являются системы с иерархической структурой. Иерархическая структура естественным образом возникает, когда объекты или некоторые их свойства находятся в отношении соподчинения (вложения, наследования). Как правило иерархическую структуру имеют системы административного управления, между элементами которых установлены отношения подчиненности (директор завода – начальники цехов – начальники участков – бригадиры — рабочие).  Иерархическую структуру имеют также системы, между элементами которых существуют отношения вхождения одних в другие.

Граф иерархической структуры называется деревом. Основным свойством  дерева является то, что между любыми двумя его вершинами  существует единственный путь. Деревья не содержат циклов и петель.

Дерево административной структуры РФ

Этапы системного анализа в управлении качеством

У дерева существует одна главная вершина, которая называется корнем дерева. Эта вершина изображается вверху; от нее идут ветви дерева. От корня начинается отсчет уровней дерева. Вершины, непосредственно связанные с корнем, образуют первый уровень.  От них идут связи к вершинам второго уровня и т.д. Каждая вершина дерева (кроме корня) имеет одну исходную вершину на предыдущем уровне и может иметь множество порожденных вершин на следующем уровне. Такой принцип связи называется “один ко многим”. Вершины, которые не имеют порожденных, называются листьями (на нашем графе это вершины, обозначающие города).

Графическое моделирование результатов научных исследований.

Общую цель научной графики можно сформулировать так: сделать невидимое и абстрактное “видимым”.  

Более того, можно “увидеть” и то, что, строго говоря, вообще плохо соответствует слову “видеть”. Так, возникшая на стыке химии и физики наука – квантовая химия – дает нам возможность “увидеть” строение молекулы. Эти изображения – верх абстракции и системы условностей, так как в атомном мире обычные наши понятия о частицах (ядрах, электронах и т.п.) принципиально неприменимы. Однако многоцветное “изображение” молекулы на экране компьютера для тех, кто понимает всю меру его условности, приносит большую пользу, чем тысячи чисел, являющихся результатами вычислений.

Изолинии.

Стандартный прием обработки результатов вычислительного эксперимента – построение линий (поверхностей), называемых изолиниями (изоповерхностями), вдоль которых некоторая функция имеет постоянное значение. Это очень распространенный прием визуализации характеристик некоторого скалярного поля в приближении сплошной среды: изотермы – линии равной температуры; изобары – линии равного давления; изолинии численности экологической популяции на местности и т.д.

Условные цвета, условное контрастирование

Это прием современной научной графики – условная раскраска. Она находит широчайшее применение в самых разных приложениях науки и представляет собой набор приемов по максимально удобной визуализации результатов компьютерного моделирования.

В различных исследованиях температурных полей встает проблема наглядного представления результатов, например, температур на метеорологических картах. Для этого можно рисовать изотермы на фоне карты местности. Но можно добиться еще большей наглядности, учитывая, что большинству людей свойственно воспринимать красный цвет как “горячий”, синий – как “холодный”. Переход по спектру от красного к синему отражает промежуточные значения температур.  При поиске полезных ископаемых методами аэросъемки с самолетов или космических спутников компьютеры строят условные цветовые изображения распределений плотности под поверхностью Земли и т.д.

Изображения в условных цветах  и контрастах – мощнейший прием научной графики.

Математические модели

Математическая модель — приближенное описание объекта моделирования, выраженное с помощью математической символики.

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математическая модель называетсякомпьютерной математической моделью, а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом.

Этапы компьютерного математического моделирования изображены на рисунке. Первый этап —определение целей моделирования. Эти цели могут быть различными:

модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействияс окружающим миром (понимание);

модель нужна для того, чтобы научиться управлять объектом (или процессом)  и определить наилучшие способы управления при заданных целях и критериях (управление);

модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Поясним на примерах. Пусть объект исследования — взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Этапы системного анализа в управлении качеством

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, «вдруг» начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом — другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным — на грани выполнимости — в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап: определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. «Формализация и моделирование»).

Третий этап: построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель — это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап: выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап: разработка алгоритма, составление и отладка программы для ЭВМ — трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, С, — в зависимости от характера задачи и склонностей программиста.

Шестой этап: тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это — лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап: собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

дескриптивные  (описательные)  модели;

оптимизационные модели;

многокритериальные модели;

игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели. Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели. Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики — теория игр, — изучающий методы принятия решений в условиях неполной информации.

37 билет

Показатель качества продукции – численное значение уровня соответствия совокупного показателя свойств оцениваемой продукции аналогичному показателю эталонного или базового образца.

Количественная характеристика одного или нескольких свойств продукции, составляющих ее качество, называется показателем качества продукции.



Высокое качество изделий предопределяется различными факторами, основными из которых являются:факторы технического характера (конструктивные, технологические, метрологические и т.д.);факторы экономического характера (финансовые, нормативные, материальные и т.д.);факторы социального характера (организационные, правовые, кадровые и т.д.).Совокупность показателей качества продукции можно классифицировать по следующим признакам:по количеству характеризуемых свойств (единичные, комплексные и интегральные показатели);по отношению к различным свойствам продукции (показатели надежности, технологичности, эргономичности и др.);по стадии определения (проектные, производственные и эксплуатационные показатели);по методу определения (расчетные, статистические, экспериментальные, экспертные показатели);по характеру использования для оценки уровня качества (базовые и относительные показатели);

по способу выражения (размерные показатели и показатели, выраженные безразмерными единицами измерения, например, баллами, процентами).

Показатели качества процесса

Система управления должна обеспечить постоянное улучшение процессов в организации, что является требованием стандарта ISO 9001:2000 (раздел 8). Для выполнения этого требования необходимо определить измеряемые показатели качества процесса. Нам представляется целесообразным структурировать эти показатели по трем группам.

Первая группа – показатели результативности выполнения процесса.

Оперативное управление процессом строится, как правило, на основе косвенных показателей, отражающих в основном техническую составляющую. Косвенными показателями качества процесса, которые можно отнести к показателям результативности выполнения процесса, могут служить, например, следующие обобщенные характеристики:

точность процесса – характеризуется величиной отклонения параметров продукции на выходе процесса от номинальных значений, установленных в документации (спецификации); для процесса документооборота, например, точность процесса может характеризоваться числом ошибок и несоответствий в разработанных документах;

возможности процесса (показатель стабильности) – характеризуются величиной разброса параметров продукции на выходе процесса в границах поля допуска, установленного в документации (спецификации);

надежность процесса – характеризуется частотой сбоев процесса, приводящих к изменению характеристик продукции, или временем работы процесса без сбоев;

производительность процесса – может измеряться временем выполнения запроса потребителя процесса (время обслуживания);

гармоничность процесса – характеризуется параметрами очередей продуктов на входе и выходе процесса; в качестве таких параметров очередей можно использовать среднюю и максимальную длину очереди, среднее и максимальное время пребывания продукта в очереди;

управляемость процесса – характеризуется величиной реакции процесса на управляющее воздействие;

безопасность процесса – характеризуется частотой сбоев процесса, повлекших за собой причинение вреда здоровью работников;

эргономичность процесса – характеризуется средним временем утомляемости работников при выполнении процесса;

экологичность процесса – характеризуется частотой сбоев процесса, повлекших за собой причинение вреда окружающей среде.

Степень соответствия фактических показателей процесса плановым (установленным) с учетом фактора риска несоответствия может быть принята как оценка результативности выполнения процесса.

Вторая группа – показатели результативности управления процессом.

Для процессов, находящихся под управлением системы менеджмента качества, должны быть сформулированы цели в области качества. Эти цели должны соотноситься с политикой в области качества и как минимум ставить задачи повышения результативности. Степень улучшения показателя качества процесса (например, из перечисленных выше) – показатель результативности управления процессом.

Третья группа – показатели эффективности процесса.

Показатели эффективности процесса отражают его «коэффициент полезного действия». Именно прямые показатели эффективности процессов могут дать наиболее ценную фактическую основу для принятия управленческих решений высшим руководством.

КЛАССИЧЕСКИЕ КРИТЕРИИ ПРИНЯТИЯ РЕШЕНИЙ

В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ. ОСОБЕННОСТИ ИХ

ИСПОЛЬЗОВАНИЯ ПРИ ОПТИМИЗАЦИИ СИСТЕМ ЛОГИСТИКИ

Как уже отмечалось выше, при оптимизации систем логистики и оптимизации звеньев цепей

поставок можно использовать различные группы критериев принятия решений в условиях

неопределенности. Это, в частности, — классические, производные и составные критерии. В данной главе

будут представлены критерии, которые принято называть классическими. К ним традиционно относят

следующие:

 максиминный критерий;

 оптимистический критерий;



Страницы: 1 | 2 | Весь текст